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Abstract

This thesis focuses on the gathering of real estate listings data from 5 OECD countries, con-
struction of a housing pricing model, and its detailed diagnostics. The real estate market plays
an important role in the broader economy, and a better understanding of its dynamics can
provide valuable insights into wealth distribution, consumer spending, and financial stability.
By analyzing the spatial dynamics of real estate prices, this thesis contributes to the field
of economics and informs evidence-based pricing models construction. The dataset collected
in this study will be made available for scientific purposes, facilitating future research and
collaborations in the field of real estate economics. Hypothesis relating to the location based
property pricing models performance are evaluated. Overall, this thesis demonstrates the
potential for research to yield significant insights into the functioning of real estate markets.
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Introduction

Historically, the real estate sector has been perceived as a traditional industry, often
resistant to the adoption of new technologies. Its operations and practices have been slow to
change, largely maintaining the conventional methods of functioning.

Simultaneously, this sector has played a pivotal role in generating massive wealth and
creating jobs, spanning both affluent and developing economies. This industry, by virtue of its
operations, contributes significantly to economic development and employment opportunities.

Given the sector’s importance, it has drawn the attention of researchers from a multitude
of fields such as economics, geography, urban studies, and computer science. These experts
have been intrigued by the potential of the real estate market and have sought to explore its
intricacies and potential opportunities for growth and innovation.

In open market economies, real estate assets are frequently bought and sold, representing
some of the most significant monetary transactions. These exchanges, excluding those on the
financial instruments markets, are among the highest-priced transactions recorded, further
underscoring the sector’s economic impact.

This has led to an exponential increase in the importance of accurate real estate market
price information. The necessity of precise valuation has resulted in a proliferation of pricing
models and methodologies aimed at more effectively determining property values.

This study makes a significant contribution to the field of real estate in two major ways.
Firstly, it has amassed an international real estate listings dataset from 5 OECD countries,
broadening the scope and reach of real estate data available for analysis.

Secondly, a spatial pricing model has been developed and evaluated, providing valuable
insights into the crucial role spatial information plays in the practice of housing valuation.
This model underscores the impact of location and surrounding features on property values,
adding a new dimension to the field of real estate pricing.

The structure of the study is laid out in three chapters for easy comprehension and sys-
tematic presentation of the findings. The first chapter provides a comprehensive overview
of property pricing models and explores recent advancements in alternative signals to these
models, setting the context for the research.

The second chapter delves into the specifics of the dataset gathered for the study, detailing
its empirical characteristics. It outlines the scope, diversity, and unique elements of the
dataset, setting the foundation for the analysis presented in the next chapter.

The final chapter of the study presents the spatial housing pricing model and demonstrates
its application to international markets, specifically in Colombia, Chile, Mexico, the Nether-
lands, and Poland. The chapter evaluates the following hypotheses: 1) Housing pricing models
may achieve high prediction accuracy without employing only property size and location in-
formation 2) inclusion of information about counts of schools, restaurants, parks, universities
and transport hubs in the property neighborhood leads to increased housing model perfor-
mance. It consolidates the study’s findings, offering a coherent summary and demonstrating
the model’s practical implications and efficacy in real-world scenarios.
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Chapter 1

Background

1.1. AVM and mass appraisal methods

1.1.1. Property pricing

The economy of property pricing aims to explain the price-generating process which leads
real estate transactions to happen at an agreed price (Mooya, 2017). In open markets property
prices are influenced by the interaction of supply and demand factors. On the demand side
economic theories assert that marginal utility derived from property ownership is a driving
force behind prices. On the supply side the costs are meant to be a dominant driving force
for price level setting process.

The literature traditionally assumes that homebuyers are driven by hedonic motivations.
The assumption implies that houses with larger quantities of desirable features (and lower
quantities of undesirable features respectively) can be sold for higher prices. That is because
homebuyers are willing to spend additional money for extra utility (and smaller disutility) they
are receiving with hedonic property features present in greater quantities. Hedonic features
are usually tied to the home itself or its location. Most common home related features include
property size, number of rooms and bathrooms, property condition, additional improvements
e.g. swimming pool, big terrace, garden, garage. Location related features might include close
access to transport hubs, schools and commercial centers, beautiful views, green and liveable
neighborhood and other.

Supply side of the housing market plays a crucial role in long term price levels in the
presence of robust demand. Supply is influenced by a range of factors:

• Land scarcity - scarce land may limit the number of houses that can be build. This
effect is profoundly pronounced in big cities where more people are competing for land
plots. Scarce land may lead to structural changes in the of houses market in the area
- scarce land leads to smaller gardens, higher buildings, less detached housing and in
some cases smaller houses surface.

• Labor and building materials costs and availability - key price components of a
new housing are labor and material costs. Materials and labour availability crunches
may disrupt construction sector developments and in effect constrain housing supply.

• Legal constraints - housing supply may be artificially constrained with restrictive
legislation, lengthy building permit processes and local zoning laws. Local restrictive
bills may be popular among members of local communities thanks to their effects of
elevated houses price levels.
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• Risk and developers profit - large scale housing construction projects may span
multiple years over which massive pools of capital are frozen. Large projects face a
plethora of risks including market risk (housing market, labor and building materials
market), credit risk and regulatory risk. To attract investments in such projects and
cushion potential headwinds the prices have to be elevated above the sum of land, labor
and material costs.

In addition to these factors, market sentiment and expectations also play a role in deter-
mining the price of residential housing. In the heated market with quick property turnover
buyers might be tempted to transact faster and agree on higher prices. Expectations around
market conditions including changes to related markets e.g. land market, credit market,
houses rental market might alter the views of market participants.

In the real estate analytics space three approaches towards property valuation are most
popular (Dornfest et al., 2002):

• Cost-based pricing or replacement cost valuation: the approach relies on the
fact that in an open market an individual or company may build the house/property on
their own. The price of property is then a sum of land cost, labor and building materials
cost, legal and organizational costs related the construction process (Eilers and Kunert,
2017).

• (Discounted) Income approach: Popular especially for commercial/office/residential
for rent property pricing, the approach assess the economic value of property to be a sum
of income over the certain period of time (Glumac and Rosiers, 2018)). Alternatively
in the discounted income approach the value is equal to an infinite sum of discounted
income stream. The approach depends on the existence of an active rental market
operating in parallel with property sales market.

• Comparative sales approach: The approach relies on market transactions to derive
the assessed property value. The assumption is that properties with comparable use, in
similar condition, located nearby and with other features relatively similar can be sold
for similar prices in the same time frame (Ciuna et al., 2017).

Hedonic models are constructed with a use of hedonic features. A derived formula can
be used to predict transaction prices for properties based on the quantity and quality of its
amenities.

Owing the high availability of property data, AVMs and mass appraisal models are re-
gression tasks which attracted broad interest of researchers from fields of machine learning,
statistics and computer science. Methods which have been applied with success to these
problems range from neural network to evolutionary algorithms (Angrick et al., 2022).

1.1.2. Real estate listings

Real estate analytics tasks and in particular construction of property valuation models
require reliable data sources. These include transactions databases, banks credit databases,
land registers and other. Completeness, data delays and included information varies in these
sources across countries. When market conditions are changing dynamically and valuation
needs to be up-to-date, then application of alternative data sources can be undertaken.

Real estate online listings provide additional information about property markets. One of
the key features of real estate listings data is the availability of a large number of variables
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that can be used as inputs for pricing models. This includes information on property charac-
teristics such as size, age, and number of rooms, as well as location-specific variables such as
neighborhood amenities and proximity to public transportation. Online listings have become
extremely popular in real estate technology space as it provides timely source of relevant
market information (Conway, 2018).

In addition, real estate listings data can provide up-to-date information on recent asking
prices, allowing pricing models to adjust their estimates based on current market conditions.
This can be particularly important in rapidly changing markets, where traditional methods
of appraisal may not capture the most current trends.

However, there are also potential challenges associated with using real estate listings data
for pricing models construction. One issue is the potential for bias in the data, as certain
types of properties may be overrepresented or underrepresented in listings data. For example,
luxury properties may be more likely to be listed than lower-priced properties, which could
skew AVM estimates.

Another challenge is the quality of the data itself. Listings data may be incomplete
or inaccurate, leading to errors in price estimates. It is important to carefully clean and
preprocess the data to ensure that it is suitable for use in pricing models construction.

Despite these challenges, real estate listings data can be a valuable input to property
pricing models and has been practically applied (Moosavi, 2017). By leveraging the wealth
of information contained in listings data, pricing models can provide accurate and up-to-date
estimates of property values, helping buyers and sellers make more informed decisions in the
real estate market. A web scraping technique has been applied to gather a real estate online
listings dataset for the purpose of this study. Details of the dataset are described in the next
chapter.

1.2. Alternative signals in property valuation

The rising availability of data sources about property in the recent years has driven growth
in incorporation of alternative signals into pricing models.

1.2.1. Floor plans

Floor plans are documents which precisely present property rooms dimensions and their
relative position, traditionally on a 2-dimensional map. Along with the layout floor plans con-
vey additional important information about property: windows location and property spatial
orientation. These features might heavily impact the valuation of a property. Properties with
uncommon and impractical layouts, low sunlight exposition or small number of windows may
be hard to sell and therefore more likely to be valued at lower price.

Integration of floor plans into pricing models has been successfully applied leading to
decrease pricing prediction errors (Solovev and Pröllochs, 2021). The method used deep
convolutional neural networks (CNNs) to extract pricing sentiment from floor plans images
and used the sentiment variables as inputs to pricing model.

1.2.2. Mobility data

Levels of human activity in certain areas might be an important factor in property val-
uation, especially for commercial properties. Recent developments (Coleman et al., 2022) in
the big data space has enabled collection of large scale mobility data with use of Android
and iOS smartphones. Dataset containing anonymized location data measured in 5 minute
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interval allow to distinguish between locations used for work and residential purposes and to
extract measures of levels of activity in different areas. Extracted features have been used as
inputs to property pricing model leading to decreased prediction errors.

1.2.3. Computer vision

Among different sources of property information, visual data sources distinguish them-
selves as sources capable of conveying most nuanced insights. Homebuyers, real estate agents
and appraisers form their opinions about property after inspecting property visually. The
emergence of online real estate listing websites has created an abundance of information in
a form of property images. The quality of this data varies from photos taken with low-end
equipment to professional photographic sessions. Virtual property walks have been growing in
popularity with the emergence of required hardware technologies1. Analytics methods used to
derive signals from property visual data have grown in popularity in the recent years helped
with new developments in computer vision field. Main factors driving that growth were devel-
opments in convolutional neural networks methods and architectures, and greater availability
of required compute resources.

Computer vision applications to property visual data processing are focused mainly on
extracting property-level attributes (building amenities inclusion, architectural styles, prop-
erty conditions) and extracting overall property sentiment. In the former case the extracted
component is fed into further pricing models, therefore the component itself does not have
to be interpretable. Owing to that computer vision methods may be employed to model
more nuanced features of the property which otherwise would be difficult to incorporate into
analytical process.

An attempt has been made to precisely predict property class and main use based on
interior and exterior photos. Multimodal neural network architecture has been employed in
that attempt (Stumpe et al., 2022).

Another promising application of computer vision in real estate is use of vision transform-
ers, a self-supervised machine learning technique to extract embeddings from images and use
them as inputs to pricing models. An attempt with use of DINO2 model has been successfully
undertaken (Yazdani and Raissi, 2023).

Main challenges which computer vision aided real estate analytics faces are related to
data quality. Property imagery comes with all sorts of resolutions and quality. Required
input normalization may remove or skew results by eliminating pieces of information from the
data.

1.2.4. Spatial information

In the context of pricing models the local nature of real estate markets necessitates the
inclusion of information from geographical neighborhood of appraised property. Effects of
spatial autocorrelation are deeply embedded into the price generating process - home sellers
set their prices primarily by observing the market in their immediate surroundings. A range of
analytical processes have been employed to ensure proper inclusion of local-level information
in the pricing models:

1Creating professional virtual walks require specialized equipment - multiple high resolution cameras paired
with hardware responsible for collecting position information. In the process of virtual walk creation, a
complete visual scan of all rooms is gathered and results form a digital twin of the property with precise floor
plans and 3D model of interiors. One of the commercially employed scanning technologies is Matterport.

2Self-DIstillation with NO labels (DINO)
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• Neighboring amenities information: Inclusion of variables describing counts of
neighboring points of interest (restaurants, schools, etc.) may provide additional signals
leading to higher model performance. This approach has been successfully applied to
Turin property market prices prediction (Bergadano et al., 2019).

• Spatial interpolation: Spatial interpolation methods are employed to estimate prop-
erty market conditions for areas lacking relevant observations and construct dense (non-
sparse) price maps. Most common approaches are kriging and inverse distance weighting.
Novel research applied geoadditive model based on penalized spline functions to Naples
residential property rental market (Giudice and Paola, 2017).

• Market microzones: Local zoning set by laws may have profound influence on prop-
erty market structure. City-level division into market microzones containing small areas
( 1km2 − 5km2) was applied to Turin housing market (Curto et al., 2017). Empirical
results indicated that >50% of price variability has been explained with market micro-
zones.

• LVRS: Location Value Response Function (LVRS) is an method which uses a contin-
uous value surface as an input to the property appraisal process. In the study of Bari
market (d’Amato, 2017b) the method application has resulted in better price prediction
performance.

• GWR: Geographically Weighted Regression (GWR) is a model architecture which pre-
dicts values with a use of neighboring observations with weights assigned using a chosen
kernel. In the investigation of Bloomington, Illinois single family housing market it
has been shown that exponential kernel yielded most desirable results characteristics
(Bidanset et al., 2017).

• Spatial lag model: The approach employs a spatial variable into the traditional hedo-
nic modeling by creating a new explanatory variable, which conveys information about
spatial effects. It has been shown that spatial lag models outperform traditional hedonic
modeling in the Minsk housing market prices prediction (d’Amato et al., 2017).

1.2.5. Entity knowledge graphs

The real estate analytics field has long been associated with a great variety of data sources
which are constantly being generated and collected. Although single source analytics already
yields insights and value, it is the knowledge fusion which can unveil additional gains. Tradi-
tionally this has been achieved by joining data sources on property level keys into tabular form.
The method however has some notable limitations when applied to datasets with multiple en-
tities which span over large timeframes. Traditional models can not easily capture relations
shifted in time and space. One tool which is being applied to overcome those limitations is
entity knowledge graph (EKG).

An EKG is a type of knowledge graph that represents information about entities and
the relationships between them. In the context of real estate, an EKG is used to model
the relationships between properties, neighborhoods, cities, regions and past transactions.
By representing these relationships in a graph structure, an EKG can provide a powerful
foundation for further modeling.

EKG can be used to create a comparative sales pricing model. Linking only compara-
ble properties with currently appraised property using EKG can yield more accurate price
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predictions. EKG-based approach3 has been successfully applied to the task of appraising
Taiwanese properties transactions (Li et al., 2022).

Property markets are prone to significant price shifts over time, which makes old pricing
models obsolete over time. Periodical recalibration of pricing models is advisable to retain
high prediction effectiveness (CoreLogic, 2011). For small markets with very few transactions
information available this need can be difficult to achieve - the number observation in a
selected time frame might be to small to achieve robust model performance. A EKG-based
approach4 has been applied to tackle a task of lifelong property valuation with use of sparse
historical transaction data (Peng et al., 2020).

3Neighbor Relation Graph Learning Framework (ReGram).
4Lifelong house price prediction (LUCE)

14



Chapter 2

Dataset

The real estate sector is a pivotal component of the global economy, long recognized as a
catalyst for economic growth, a substantial employer, and a generator of added value. As a
constituent of the traditional sectors, it has not escaped the pervasive influence of digitization
and the advent of the Internet. The emergence of online real estate listings portals has
instigated a significant transformation within the industry by providing sellers and buyers
with pertinent property and market information. Current listing websites are inundated with
data pertaining to prices, property characteristics, and location. The ubiquity of Internet
portals as a primary platform for real estate sales and inquiries has facilitated the introduction
of a multitude of novel approaches to market insights and analysis. Consequently, trackers
and indices reflecting market trends and dynamics have evolved to be more immediate and
accurate.

The terms ’listing prices’ and ’transaction prices’ embody the seller’s publicized intention
to sell and the negotiated rate settled upon by all participating parties in the transaction,
respectively. The relationship between these ’ask prices’ and ’transaction prices’ is character-
ized by several attributes: a significant degree of correlation, dynamism, and a dependency
on prevailing market conditions. These features warrant deeper exploration in order to fully
comprehend the complex dynamics that drive price setting and negotiation in markets.

In an idealized marketplace, the publicly declared intent to sell would precisely mirror the
intrinsic value of the property market. However, it is commonplace in both developed and
emerging property markets to witness a divergence between these two metrics. This variance
typically manifests as a positive difference, as buyers infrequently find financial advantage in
paying more than the asking price set by sellers. Numerous dynamic factors may underpin
the degree of the observed discrepancy.

A pertinent factor influencing this discrepancy is the robustness of market demand for a
specific category of properties. Flourishing economies, fueled by affordable credit, may engen-
der a climate in which the growth of demand surpasses the expansion of supply. Under these
market conditions, the noted discrepancy might invert to a negative value due to competitive
bidding wars that result in transaction prices exceeding the initially listed prices. Conversely,
when confronted with anemic demand, there may be an elongation in the duration properties
remain listed in the market. Sellers exhibiting minimal patience for procuring a buyer may
be enticed to finalize transactions at prices lower than initially listed.

Additionally, the degree of market dynamism significantly impacts the relationship be-
tween listing prices and transaction prices. In a market characterized by stability, the observed
discrepancy may be comparatively minor, attributable to a greater convergence between sell-
ers’ and buyers’ expectations. In contrast, within a volatile market, an escalating disparity
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might be evident, arising from swift alterations in market conditions and the consequent shifts
in the expectations of market participants. High market dynamism may harm the applicability
of real estate pricing models due to they decaying accuracy (Robson and Downie, 2008).

Other elements influencing the relationship between ask prices and transaction prices
encompass the precision of the listing price, the negotiation prowess and leverage of both the
buyer and seller, as well as the timeline designated for the transaction. These facets may be
subject to fluctuations driven by demographic shifts, the accessibility and veracity of market
information available to the public, and alterations in overall market sophistication.

The aims of this chapter are twofold: first the incremental data collection process is
described; second the resulting dataset characteristics are documented and explored.

2.1. Data collection process

2.1.1. Introduction

Web scraping constitutes an expanding domain, purposed to harness publicly accessible
Internet data sources for enhancing analytics and digital offerings. This segment delves into
the intricacies of an incremental data acquisition methodology for online real estate listings
across numerous OECD nations. Essential technologies and techniques are examined to afford
a comprehensive comprehension of the entailed difficulties and constraints of the dataset.

2.1.2. Web Scraping Process

Web scraping, interchangeably referred to as web crawling or scraping, represents a data
engineering methodology aimed at integrating internet data sources. The incorporation of
webpages as a data source predominantly transpires without necessitating alterations to the
original service. The primary function of web scraping processes lies in the acquisition, trans-
formation, and preservation of data content originating from internet data sources. A sub-
stantial portion of webpages accessible on the internet are delivered by the backend software
in HTML format.

In executing analytical studies employing web-scraped data, one must judiciously select
the websites of interest. For the assembly of this dataset, a compilation of links to 1693 promi-
nent real estate portals was curated, employing the link aggregator allyoucanread.com. This
collection incorporated the most frequented property portals spanning nearly every country
globally. Ultimately, the list was refined to exclusively encompass countries of interest and
websites adhering to the subsequent criteria:

1. No aggressive bot protection present on the website

2. Available information about prices and property sizes

3. Location geographical coordinates available

Countries included in the study have been selected to provide a sample from diverse
geographical and economic areas:

• Colombia: medium income country with vast areas covered with rainforest.

• Chile: mountainous and coastal country with unique geography.

• Mexico: huge country with vast rural areas and dense urban centers.
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Figure 2.1: Web scraping - key page components identification with Fincaraiz.com.co example.
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• Netherlands: high income country with large population density.

• Poland: large european country with relatively low urbanization rate.

For each preselected data source, a specialized web scraping process necessitates develop-
ment. This process should reliably procure HTML content, an outcome achieved through the
employment of software retry schemes and rotating proxy pools. The subsequent phase in-
volves transforming the procured HTML into one of the standard analytical formats. Amidst
a plethora of tools capable of accomplishing this task, BeautifulSoup, a Python library, dis-
tinguishes itself as a remarkably convenient choice. It facilitates HTML querying utilizing
CSS selectors. Owing to its user-friendly nature and high performance, it was elected as the
tool of choice for this study.

Procured outcomes are archived to the cloud storage layer (AWS S3), ensuring reliability
and fault tolerance. The preferred data storage file format for this investigation is Apache
Parquet.

Once the web scraping procedure is operational, it necessitates systematic execution to
maintain dataset currency. In this investigation, the Dagster ETL platform was elected to
orchestrate web scraping workloads and schedules.

2.1.3. Data Cleaning and Validation

To undertake an analysis predicated on the collated dataset, the construction of a data
cleaning and validation pipeline is imperative (Dornfest et al., 2018). This step is vital to
ascertain that data points chosen for examination accurately represent the selected markets.
Data consistency, crucial for international analysis, is maintained and imposed at the level of
national markets.

The dataset underwent deduplication and filtration to incorporate solely non-extreme ob-
servations, thus circumventing the distortion of statistical analysis results. Properties with
prices and sizes beneath the 5th percentile and exceeding the 95th percentile within each na-
tion were excluded to accommodate for data entry errors, which are commonplace in datasets
accrued via web scraping methods. As the study significantly hinges on the spatial charac-
teristics of properties, observations devoid of geocoordinates were eliminated.

Unidad de Fomento, the Chilean non-circulating currency in which property prices are
often presented, has been converted to the Chilean Peso using daily exchange rates from
Chilean Internal Revenue Service (Servicio de Impuestos Internos).

2.1.4. Cloud Technologies

The emergence of cloud technologies has enabled a plethora of novel approaches towards
data platforms architecture. For the purpose of this study cloud technologies have been
utilized extensively as a compute and data storage layers of the architecture stack. Amazon
Web Services Simple Storage Service (AWS S3) has been incorporated as a data storage layer.
OVH Cloud VPS provided required compute infrastructure.

2.1.5. Unique Offer IDs

The dataset used for real estate market analysis should be free from observation duplication
which can lead to overrepresentation of certain property groups and mislead conclusions. Since
the study has limited the data sources selection to non-overlapping, single national websites,
it is sufficient to deduplicate datasets within each country. This is achieved with use of unique
portal offer IDs.
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Figure 2.2: Unique offer ID with Fincaraiz.com.co example.

Figure 2.3: Key components of incremental data collection process.

Portal tag (usually derived from the website domain name) followed by colon and al-
phanumeric string of characters form together an unique property offer identifier which can
be used for deduplication purposes. The alphanumeric string is extracted from property offers
hyperlinks or respective id holding HTML elements.

2.1.6. Incremental Data Collection Process

The task of real estate market tracking based on Internet portals data requires care-
ful consideration from the temporal modeling perspective. The dataset described in this
chapter implements unitemporal data model. The single temporal column in the dataset is
date_scraped, which holds information about the exact date and time when the listing was
downloaded by a web scraping process. It has been chosen as an approximation of bitemporal
data model with columns date_scraped and date_posted (when the listing was published on
the source website). The ability to collect date_posted column from the source websites is
constrained by limited availability of such information. The approximation has been achieved
through incremental data collection process.

Incremental data collection process is organized as an iterative effort to keep the dataset
up-to-date with the state of the source website.

1. Visit a source website and get first page of newest real estate listings.

2. Compare IDs of offers listed on the first page with already seen IDs.
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Figure 2.4: Rotating proxy as a component of web scraping pipeline.

3. Save new offers.

4. Update a data structure which holds already seen IDs.

If the pace of new offers additions on the source website is lower than collection rate,
than the dataset will always reflect the state of the data source. In practice data collection
schedule every 15-30 minutes provides sufficient data collection rate with a very conservative
safety margin.

2.1.7. Proxies

Proxies play an important role in distributed data collection by providing stability and
reliability to the data collection process. Distributed data collection involves collecting data
from multiple sources simultaneously, which can result in network congestion, bandwidth
limitations, and IP blocking. Proxies can help mitigate these issues by acting as intermediaries
between the data collection tool and the target website.

Stability

Proxies can help improve stability by reducing network congestion and limiting the number
of requests made to a website. By using multiple proxies, the data collection tool can distribute
requests across different IP addresses, reducing the likelihood of getting blocked or blacklisted
by the website. Proxies can also be configured to limit the number of requests made to
a website within a specific time frame, reducing the risk of triggering rate limits or other
security measures.

Reliability

Proxies can also help improve reliability by ensuring that the data collection process con-
tinues uninterrupted. If the IP address of the data collection tool gets blocked or blacklisted by
the target website, the data collection process can be interrupted or terminated. With the use
of proxies, the data collection tool can switch to a different IP address if one becomes blocked
or blacklisted, ensuring that the data collection process continues without interruption.

Proxy Rotation

To further improve stability and reliability, proxies can be rotated on a regular basis.
Proxy rotation involves switching between different proxies at regular intervals, such as every
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few minutes or every few hours. This can help prevent the target website from identifying
and blocking the data collection tool, as the IP address will change frequently.

Proxy IP pool from which IP addresses are picked to relay request is exposed to the public
Internet via proxy router. Proxy router is a component responsible for handling and authen-
ticating incoming network traffic and distributing it across the pool. The traffic distribution
may be performed by static iteration over each IP address in the pool or dynamically based on
runtime IP addresses performance characteristics such as response times and request success
rates.

Distributing the network traffic over a large IP pool does not guarantee a success for
data acquisition process. Proxy failures do occur at rates comparable to connection errors
to average webpage. Robust retry mechanisms are introduced as mitigation technique for
failure prone network operations. Network request retries may be performed after static or
dynamically increased time intervals called backoff. Exponential backoff is one of frequently
used techniques.

Network requests failures may be caused by website blocks, network errors, server overload,
or other. Web scraping processes may include logic to distinguish between these in order to
apply appropriate reaction. One notable example is HTTP 429 request status code (Too Many
Requests). It is returned by server when too much traffic is being sent via network. Clients
receiving HTTP 429 should reattempt requests after time specified in the response header
field Retry-After.

2.1.8. Apache Parquet

As a basis for data engineering operations required to conduct this study Apache Parquet
has been chosen as data storage file format. Apache Parquet is an open-source columnar
storage format that is designed to optimize data processing for big data analytics. It is highly
optimized for performance and is commonly used in big data analytics platforms such as
Hadoop, Spark, and Amazon EMR.

Notable benefits of use of Apache Parquet in real estate analytics application that lead to
the choice involve:

1. Columnar Storage: Apache Parquet stores data in columns instead of rows, which
allows for faster and more efficient analytical queries. In real estate analytics, this means
that data can be quickly analyzed across a large number of listings or properties.

2. Compression: Apache Parquet uses advanced compression techniques to reduce the
amount of storage space required for data. This makes it an ideal format for storing large
and evolving datasets such as real estate listings, as it can help reduce cloud storage
costs. Compression is achieved even in small files.

3. Schema Evolution: Apache Parquet supports schema evolution, which means that the
schema can be updated over time without breaking existing queries. This is important
for web scraping based real estate analytics, as new data may be added over time or the
structure of the data may change.

4. Performance: Apache Parquet is highly optimized for performance and can handle
large datasets with billions of rows and terabytes of data. This means that the format
may support the dataset quickly and efficiently, even on at big data scale.

5. Interoperability: Apache Parquet is an open-source format and is supported by many
big data platforms such as Hadoop, Spark, and Amazon EMR. This means that real
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Figure 2.5: Dagster ETL platform - Dagit UI dashboard with dataset scrape processes or-
chestration.

estate analytics data stored in Parquet format can be easily integrated with other big
data tools and platforms.

Apache Parquet is a highly efficient and optimized file format for analytics. Its columnar
storage, compression techniques, schema evolution support, performance, and interoperability
make it an ideal format for storing and analyzing large datasets in the real estate industry.
By using Apache Parquet, analytics can be performed quickly and efficiently, while reducing
storage costs and supporting future data growth and changes.

2.1.9. Dagster

Orchestrating web scraping processes which collect information from multiple countries
with different schedules and operational setup poses a significant data engineering challenge.
Web scraping scripts created for this study are managed with the use of Dagster.

Dagster is an open-source data orchestrator tool that can be used to manage and execute
complex workflows for data processing, including web scraping workloads. It provides a
simple and modular way to define the dependencies between the different components of a
data pipeline, making it easy to test and debug the entire workflow.

Key characteristics which drove the Dagster adoption for web scraping workloads are:

1. Declarative data pipeline definitions: Dagster allows to declaratively define a data
pipeline as a collection of independent components, each of which performs a specific
task in the data processing workflow. For web scraping workloads, these components
include tasks such as fetching web pages, extracting data, and storing results in a data
storage layer.

2. Dependency management: With Dagster, dependencies between the different com-
ponents of the pipeline are clearly defined, ensuring that each task is executed in the
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correct order. The task of extracting data from a web page can only be performed after
the task of fetching the web page is complete.

3. Running the pipeline: Once the pipeline is defined, Dagster is used to run the pipeline
on a distributed computing infrastructure - Kubernetes cluster in the cloud. This allows
pipelines to handle large volumes of data and to distribute the workload across multiple
machines.

4. Monitoring and debugging: Dagster provides built-in tools for monitoring the progress
of the data pipeline and identifying errors or issues. For web scraping workloads, this is
particularly useful for identifying and addressing issues related to network connectivity,
data quality, or performance.

5. Testing and validation: With Dagster, the task of testing and validation of each
component of the data pipeline is performed both in isolation, as well as the entire
workflow as a whole. This helps to ensure that the pipeline is functioning correctly and
that it is producing accurate results.

2.1.10. AWS S3

This study is an attempt to deliver a dataset which can be used for analytics in the future.
All data acquisition pipeline components were chosen to ensure project scalability beyond the
scope of this study. A critical choice in any data project has to be made about a way in
which data is being stored. Data storage layer should ensure linear scaling with dataset
size, flexibility and cost effectiveness. After careful consideration of available databases and
systems AWS S3 has been chosen for this dataset.

AWS S3 (Amazon Web Services - Simple Storage Service) is a cloud-based object storage
service that provides a highly scalable and durable platform for storing and retrieving data.
In context of storing incrementally collected real estate listings datasets in Parquet format it
manifests high performance, scalability, and cost-effectiveness. Apache Parquet compression
helps to further reduce data storage costs.

AWS S3 - technical considerations

There are several technical consideration which make AWS S3 a good choice for storing
incrementally collected real estate listings datasets in Parquet format. These include:

1. Scalability: S3 provides virtually unlimited storage capacity, which makes it well-suited
for storing growing datasets such as real estate listings.

2. Durability: S3 provides 99.999999999% durability1, which means that the data is
highly resistant to loss or corruption.

3. Availability: S3 provides high availability, which means that the data can be accessed
quickly and reliably from anywhere in the world.

4. Cost-effectiveness: S3 is a cost-effective storage solution, as it provides usage based
pricing model.

23



Figure 2.6: Dataset persistence storage layer - AWS S3 key structure matrix.

Data storage structure

Although AWS S3 is a key-value object store, object keys can include forward slashes
characters ’/’ and key prefixes can form logical groups similar to directories known from
desktop file systems. This convention has been adopted in the study. Each web scraping
process writes data to a separate root level prefix. Data chunks and IDs metadata Apache
Parquet files are stored in separate prefixes under each web scraping prefix. This convention
forms a logical scrape <-> data/metadata matrix which helps to maintain uniformity and
consistency across multiple scraping processes.

Retrieving the data from S3

Dataset snapshot has to be generated from data chunks stored on AWS S3 in order to
perform analytics tasks. The process involves reading all data chunks contents into analytics
compute and concatenating them into one data file. Dataset rows may be filtered to only
include certain time period. After filtering step, the dataset is persisted to local disk for later
use.

2.1.11. Compute infrastructure

The remaining infrastructure component required for dataset acquisition pipeline is com-
pute layer and containers orchestrator. Kubernetes has been chosen to orchestrate Docker
containers, OVH Cloud VPS was used as a compute layer.

Kubernetes

Dagster task orchestrator deployment has been paired with Kubernetes cluster. Dagster
workers are deployed in Docker containers on Kubernetes and so are Dagster UI and main

1AWS S3 Data Durability.
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Figure 2.7: Dataset snapshot generation process.

engine components. Kubernetes is an open-source platform designed to automate the deploy-
ment, scaling, and management of containerized applications. It is a highly versatile choice
for organizations and individuals that require a robust and efficient system for managing
complex, multi-container architectures.

Key Kubernetes traits that drove this technical choice were:

1. Scalability: Kubernetes supports horizontal scaling, allowing the platform to handle an
increase in demand by adjusting the number of running containers. This enables Dagster
to easily scale its workers up or down based on the needs, ensuring that resources are
used efficiently.

2. Reliability: Kubernetes ensures high availability of applications by redistributing work-
loads in case of a failure and providing self-healing capabilities, such as auto-restarting,
re-scheduling, and replicating containers. The platform is designed with a built-in con-
trol plane to maintain system stability.

3. Security: Kubernetes provides robust security features, including secret management
to handle sensitive data, network policies to control access to applications, and built-in
service accounts. Moreover, the Kubernetes ecosystem is rich with additional security
tools and add-ons that can be used to further enhance the security posture of the
applications.

4. Cost-effectiveness: Kubernetes, being an open-source platform, significantly reduces
software costs. Additionally, efficient resource utilization, facilitated by Kubernetes’
automatic scaling and load balancing features, can result in considerable savings in
infrastructure costs.

OVH Cloud VPS

Compute layer is a foundational part of any data pipeline. OVH Cloud VPS is a cloud-
based virtual private server solution that provides a scalable and flexible hosting environment
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for a wide range of applications. OVH Cloud VPS has been chosen due to its cost-effectiveness
and sufficient reliability.
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2.2. Dataset variables

2.2.1. Price

Table 2.1: Dataset variables - price
Attribute Description

Name Price
Identifier price

Units Denoted by Currency Code
Type Continuous

Range 5th - 95th percentile of prices in each country
Transformations For Chile Unidad de Fomento transformation

Source Real estate listings

The ’Price’ attribute signifies the listing price of a property and serves as a continuous
variable in our dataset. The range for this attribute is between the 5th and 95th percentile
of all property prices within each respective country. For Chilean properties, the pricing is
adjusted with the ’Unidad de Fomento’ transformation, which is a unit of account used in
Chile that is regularly adjusted for inflation. The data for this attribute is directly derived
from real estate listings.

2.2.2. Currency Code

Table 2.2: Dataset variables - Currency Code
Attribute Description

Name Currency Code
Identifier currency_code

Type Categorical (ISO 4217)
Transformations None

Source Real estate listings

In the presented dataset, the ’Currency Code’ represents a categorical variable adhering to
the ISO 4217 standard. This attribute, derived directly from real estate listings, requires no
transformation for analysis and provides essential context for interpreting the corresponding
price values.

2.2.3. Property Size

The ’Property Size’ attribute in the dataset represents a continuous variable detailing the
size of a property in square meters. Sourced directly from real estate listings and encompassing
a range of 10 to 500 square meters, this attribute does not necessitate any transformation for
further analytical operations.

2.2.4. Date Scraped

The attribute ’Date Scraped’ is a date-type variable in the dataset, formatted as ’YYYY-
MM-DD’. This attribute, generated by a web scraping script, signifies the date at which the
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Table 2.3: Dataset variables - Property Size
Attribute Description

Name Property Size
Identifier property_size

Units Square Meter
Type Continuous

Range 10 - 500
Transformations None

Source Real estate listings

Table 2.4: Dataset variables - Date Scraped
Attribute Description

Name Date Scraped
Identifier date_scraped

Units YYYY-MM-DD
Type Date

Transformations None
Source Web scraping script

corresponding property information was retrieved, requiring no transformations for down-
stream analysis.

2.2.5. Offer Type

Table 2.5: Dataset variables - Offer Type
Attribute Description

Name Offer Type
Identifier offer_type

Type Categorical
Categories Rent, sale for houses, apartments, commercial buildings, land and other

Transformations Unification across data sources
Source Real estate listings

The ’Offer Type’ attribute within the dataset denotes a categorical variable that distin-
guishes the nature of the property listing, such as rent or sale for a variety of property types
including houses, apartments, commercial buildings, land, among others. This information is
sourced directly from real estate listings. Given its categorical nature and potential inconsis-
tencies across data sources, it required unification and standardization procedures to ensure
uniformity and ease of analysis.

2.2.6. Portal Offer ID

The ’Portal Offer ID’ is a text-type attribute in the dataset, signifying the unique identifier
for a property listing as provided by the listing portal. This identifier is procured directly
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Table 2.6: Dataset variables - Portal Offer ID
Attribute Description

Name Portal Offer ID
Identifier portal_offer_id

Type Text
Transformations Website tag prepended

Source Real estate listings

from real estate listings. To enhance the traceability and uniqueness of each listing across
various sources, a transformation is implemented to prepend the website tag to the original
offer ID.

2.2.7. Offer Original URL

Table 2.7: Dataset variables - Offer Original URL
Attribute Description

Name Offer Original URL
Identifier offer_original_url

Type Text
Transformations None

Source Real estate listings

The ’Offer Original URL’ attribute within the dataset is a text-type variable, which rep-
resents the original web address from which a property listing was obtained. Sourced directly
from the real estate listings, this attribute requires no transformations and serves as a vital
reference for accessing the original online property listing.

2.2.8. Title

Table 2.8: Dataset variables - Title
Attribute Description

Name Title
Identifier title

Type Text
Transformations HTML tags cleanup

Source Real estate listings

The ’Title’ attribute in the dataset constitutes a text-type variable, encapsulating the
headline or primary descriptor of the property listing. Extracted directly from real estate
listings, this attribute required a transformation process - HTML tags cleanup, to ensure
readability and optimal utility in subsequent analyses.
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Table 2.9: Dataset variables - Description
Attribute Description

Name Description
Identifier description

Type Text
Transformations HTML tags cleanup

Source Real estate listings

2.2.9. Description

The ’Description’ attribute in the dataset is a text-type variable providing a detailed
account of the property listing. This attribute, sourced directly from real estate listings,
may potentially contain extraneous HTML tags. Hence, a transformation process, specifically
HTML tags cleanup, has been used to maintain clean, comprehensible text data for further
analyses.

2.2.10. Photos URLs

Table 2.10: Dataset variables - Photos URLs
Attribute Description

Name Photos URLs
Identifier photos_urls

Type List
Transformations None

Source Real estate listings

The ’Photos URLs’ attribute within the dataset represents a list-type variable, containing
a collection of URLs corresponding to images associated with the property listing. Derived
directly from real estate listings, this attribute does not necessitate any transformations and
provides an option to source visual context to supplement the textual property information.

2.2.11. Address Country

Table 2.11: Dataset variables - Address Country
Attribute Description

Name Address Country
Identifier address_country

Type Categorical
Transformations None

Source Real estate listings

The ’Address Country’ attribute in the dataset is a categorical variable that specifies
the country location of the property listing. Sourced directly from real estate listings, this
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attribute does not require any transformations and provides a crucial geographical context
for each property listing.

2.2.12. Address Raw

Table 2.12: Dataset variables - Address Country
Attribute Description

Name Raw Address
Identifier address_raw

Type Text
Transformations Text standardization

Source Real estate listings

The ’Raw Address’ attribute represents a text-type variable in the dataset, supplying the
unprocessed, original address of the property listing. This information, extracted directly from
real estate listings, may necessitate transformations such as text standardization to ensure
uniformity and ease of data analysis.

2.2.13. Issuer Type

Table 2.13: Dataset variables - Issuer Type
Attribute Description

Name Issuer Type
Identifier issuer_type

Type Categorical
Categories Individual, Agent, Developer

Transformations None
Source Real estate listings

The ’Issuer Type’ attribute within the dataset constitutes a categorical variable, distin-
guishing who has listed the property: an individual, agent, or developer. This information is
sourced directly from real estate listings and does not require any transformations, providing
valuable insight into the listing party’s category for each property.

2.2.14. Tag

Table 2.14: Dataset variables - Tag
Attribute Description

Name Tag
Identifier tag

Type Categorical
Transformations None

Source Web scraping script
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The ’Tag’ attribute marks each property listing with the data source (website).

2.2.15. Location Longitude

Table 2.15: Dataset variables - Location Longitude
Attribute Description

Name Location Longitude
Identifier location_longitude

Units Decimal Degrees
Type Continuous

Range -180 to 180
Transformations Country level filtering

Source Real estate listings

The ’Location Longitude’ attribute constitutes a continuous variable within the dataset,
delineating the longitudinal geographical coordinate of the property listing. This attribute,
extracted from real estate listings, is represented in decimal degrees with a range from -180
to 180. For focused analysis, country-level filtering has been employed as a transformation
method.

2.2.16. Location Latitude

Table 2.16: Dataset variables - Location Latitude
Attribute Description

Name Location Latitude
Identifier location_latitude

Units Decimal Degrees
Type Continuous

Range -90 to 90
Transformations Country level filtering

Source Real estate listings

The ’Location Latitude’ attribute represents a continuous variable in the dataset, defin-
ing the latitudinal geographical coordinate of the property listing. Derived from real estate
listings, this attribute is presented in decimal degrees and spans a range from -90 to 90. To
facilitate specific geographic analysis, a country-level filtering has been executed.

2.2.17. Restaurants

The ’Restaurants’ attribute is a non-negative integer variable that corresponds to the
quantity of dining establishments in proximity to a given property listing. This data, obtained
through augmentation from OpenStreetMap, is grouped into three distinct distance levels.
This approach enhances the understanding of the property’s location relative to local amenities
and lifestyle conveniences.
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Table 2.17: Dataset variables - Restaurants
Attribute Description

Name Restaurants
Identifier restaurants

Type Non-negative integer
Transformations Grouped into 3 distance levels

Source Data augmentation - OpenStreetMap

2.2.18. Schools

Table 2.18: Dataset variables - Schools
Attribute Description

Name Schools
Identifier schools

Type Non-negative integer
Transformations Grouped into 3 distance levels

Source Data augmentation - OpenStreetMap

The ’Schools’ attribute signifies the number of educational institutions within certain dis-
tance levels around a property, quantified as a non-negative integer. This data is procured
through the augmentation from OpenStreetMap and subsequently categorized into three dis-
tinct distance levels. The categorization enriches the understanding of the property’s envi-
ronment, particularly in terms of its proximity to educational facilities, an important consid-
eration for many prospective buyers or tenants.

2.2.19. Transport

Table 2.19: Dataset variables - Transport
Attribute Description

Name Transport
Identifier transport

Type Non-negative integer
Transformations Grouped into 3 distance levels

Source Data augmentation - OpenStreetMap

The ’Transport’ attribute quantifies the presence of tram, subway, and bus stops within
predefined radius levels around a property, denoted as a non-negative integer. This data is
sourced through augmentation from OpenStreetMap and subsequently stratified into three
distance levels. This spatially referenced data informs potential buyers or tenants about the
accessibility of public transportation from the property, an influential factor in real estate
decision-making.
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Table 2.20: Dataset variables - Parks
Attribute Description

Name Parks
Identifier parks

Type Non-negative integer
Transformations Grouped into 3 distance levels

Source Data augmentation - OpenStreetMap

2.2.20. Parks

The ’Parks’ attribute represents the number of public parks located within predefined
distance categories from the property, enumerated as a non-negative integer. Derived from the
OpenStreetMap database, this attribute is grouped into three distance levels post-acquisition.
This variable provides an indication of recreational and green spaces surrounding a property,
elements often associated with the livability of a neighborhood and thus the attractiveness of
a property.

2.2.21. Universities

Table 2.21: Dataset variables - Universities
Attribute Description

Name Universities
Identifier universities

Type Non-negative integer
Transformations Grouped into 3 distance levels

Source Data augmentation - OpenStreetMap

The ’Universities’ attribute represents the count of universities located within pre-established
distance bands from the property, quantified as a non-negative integer. This data is gathered
from the OpenStreetMap database, and subsequently grouped into three distance levels. The
proximity to higher education institutions is a variable of interest as it may impact the value
and desirability of a property, particularly for students, faculty, or those valuing educational
accessibility.
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2.3. Dataset empirical characteristics

Presented are latest statistics on population, surface, population density and urbanization
rates reported at World Bank Open Data. Presented maps are rectangular projections of
calculated price grids (See Chapter 3). Countries proportion may not match popular map
projections e.g. Mercator projection.

2.3.1. Colombia

Table 2.22: Colombia - basic information
Detail Value

Population 51,516,562
Area 1,109,500 km2

Population density 46/km2

Urbanization rate 82%

Figure 2.8: Colombian housing market - prices spatial distribution

Figure 2.9: Colombian housing market - offers density

The scrutinized Colombian housing market exhibits pronounced concentration within the
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principal metropolitan areas. The urban triangle encompassing Bogotá, Medellín, and Cali
epitomizes the costliest and most dynamic segment of the Colombian housing market. The
extensive terrain covered by the Amazonian forest constitutes a significant proportion of
Colombian territory, where market activity is discernibly minimal. Generally, house prices in
these remote and inaccessible regions are markedly lower than those in proximity to urban
centers.

Table 2.23: Colombian housing market - descriptive statistics
Price [COP] Price per m2 [COP] Size [m2]

µ 763,384,296 3,558,622 209
σ 614,141,206 1,633,832 111
Minimum 50,000,000 1,042,945 20
Q1 330,000,000 2,321,429 120
Q2 580,000,000 3,250,000 187
Q3 980,000,000 4,454,545 280
Maximum 4,500,000,000 9,392,265 500

Figure 2.10: Colombian housing market - prices and sizes distributions

Reported statistics indicate that houses in Colombia on average tend to be larger than in
other countries included in the study.

Table 2.24: Colombian housing market - dataset details
Detail Value

Data time range From 2023-03-27 to 2023-05-01
Observations 17165
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2.3.2. Chile

Table 2.25: Chile - basic information
Detail Value

Population 19,493,184
Area 743,532 km2

Population density 26/km2

Urbanization rate 82%

Figure 2.11: Chilean housing market - prices spatial distribution

Figure 2.12: Chilean housing market - offers density

The Chilean housing market under examination is typified by a pronounced concentration
within the Santiago metropolitan region. Other significant regions, encompassing Concepción,
Temuco, and Antofagasta, account for the majority of housing market activity. The remote
regions within the Andes are distinguished by minimal market activity and diminished price
levels. Generally, when disregarding the inaccessible sections of the country, house prices
exhibit a relatively uniform distribution across both rural and urban sectors.
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Table 2.26: Chilean housing market - descriptive statistics
Price [CLP] Price per m2 [CLP] Size [m2]

µ 435,457,600 2,157,531 194
σ 332,079,784 934,230 108
Minimum 15,900,000 650,379 13
Q1 178,899,584 1,409,911 110
Q2 342,382,971 2,001,118 160
Q3 600,000,000 2,782,841 260
Maximum 2,330,355,300 4,893,746 500

Figure 2.13: Chilean housing market - prices and sizes distributions

Reported statistics indicate that houses in Chile on average tend to be smaller than in
other South American countries included in the study.

Table 2.27: Chilean housing market - dataset details
Detail Value

Data time range From 2022-11-24 to 2023-05-01
Observations 4690

38



2.3.3. Mexico

Table 2.28: Mexico - basic information
Detail Value

Population 126,705,138
Area 1,943,950 km2

Population density 65/km2

Urbanization rate 81%

Figure 2.14: Mexican housing market - prices spatial distribution

Figure 2.15: Mexican housing market - offers density

The scrutinized Mexican housing market displays significant activity primarily in the
central region of the country, predominantly on the peripheries of Mexico City and other
urban areas. The dataset offers minimal coverage of the extensive rural areas in Mexico. This
limited rural coverage could be attributable to the restrained digitization of the market in
the less developed Mexican regions. On average, price levels are elevated in central Mexico,
regions in proximity to the United States, and the Yucatan Peninsula.
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Table 2.29: Mexican housing market - descriptive statistics
Price [MXN] Price per m2 [MXN] Size [m2]

µ 2,817,915 13,681 189
σ 3,203,673 9,689 100
Minimum 269,337 2,232 20
Q1 750,000 5,430 110
Q2 1,460,000 11,883 167
Q3 3,694,500 19,410 250
Maximum 27,000,000 59,375 500

Figure 2.16: Mexican housing market - prices and sizes distributions

Reported statistics indicate that housing market in Mexico has an unusually high number
of smaller (up to 120 square meters), cheap homes (up to 10k MXN per square meter). They
make up for almost half of the market.

Table 2.30: Mexican housing market - dataset details
Detail Value

Data time range From 2023-03-25 to 2023-05-01
Observations 7275
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2.3.4. Netherlands

Table 2.31: Netherlands - basic information
Detail Value

Population 17,533,044
Area 33,670 km2

Population density 518/km2

Urbanization rate 93%

Figure 2.17: Dutch housing market - prices spatial distribution

Figure 2.18: Dutch housing market - offers density

The Dutch housing market under scrutiny exhibits consistent activity across both urban
and rural regions. The highest price levels are registered in the vicinity of Amsterdam and
Rotterdam, with relatively elevated prices persisting in the central and southern sectors of the
country. Contrastingly, the northern segment of the country displays the lowest price levels.
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Table 2.32: Dutch housing market - descriptive statistics
Price [EUR] Price per m2 [EUR] Size [m2]

µ 483,074 3,594 134
σ 235,983 923 50
Minimum 145,000 2,110 40
Q1 325,000 2,895 103
Q2 425,000 3,422 123
Q3 569,000 4,114 150
Maximum 2,495,000 6,860 476

Figure 2.19: Dutch housing market - prices and sizes distributions

Reported statistics indicate that variability in house prices and sizes in Netherlands is
limited. The majority of the offers on market fall into narrow range of 100-200 square meters
in size and with prices in range of 2500-4500 EUR per square meter.

Table 2.33: Dutch housing market - dataset details
Detail Value

Data time range From 2023-04-10 to 2023-05-01
Observations 2268
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2.3.5. Poland

Table 2.34: Poland - basic information
Detail Value

Population 37,747,124
Area 306,130 km2

Population density 124/km2

Urbanization rate 60%

Figure 2.20: Polish housing market - prices spatial distribution

Figure 2.21: Polish housing market - offers density

The scrutinized Polish housing market displays vigorous activity within the primary
metropolitan regions, with substantial clusters of activity proximate to Warsaw, Cracow,
Wrocław, Gdańsk, and Poznań. Silesia distinguishes itself from other regions with its dis-
persed housing market devoid of a central point. Price levels peak within urban areas, along
the Baltic Sea coast, and in the mountainous regions near the southern border.
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Table 2.35: Polish housing market - descriptive statistics
Price [PLN] Price per m2 [PLN] Size [m2]

µ 944,818 6,152 155
σ 624,515 2,398 74
Minimum 59,000 2,072 17
Q1 569,000 4,445 103
Q2 770,000 5,810 138
Q3 1,149,900 7,413 184
Maximum 6,500,000 14,650 500

Figure 2.22: Polish housing market - prices and sizes distributions

Reported statistics indicate that housing market in Poland manifests greater variability
in house sizes than in price levels.

Table 2.36: Polish housing market - dataset details
Detail Value

Data time range From 2023-01-01 to 2023-05-01
Observations 33510

2.4. Conclusions

The web scraping data collection process is an effective method for collecting data from
websites on a large scale. The process involves identifying the websites that contain the data
of interest, developing a web scrape process to collect the data, and cleaning and validating
the data. For this study, web scraping was used to collect data on house sales offers from a
number of countries. To ensure data collection process robustness and scalability a number
of technical decision had to be made. Successful application of web scraping techniques
requires careful balancing between aggressive data acquisition and integration of reliability
and sustainability considerations. The next chapter will describe the data analytical process
used to asses performance of alternative location based house pricing models withe the use of
collected dataset.
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Chapter 3

Model

One of the goals of this study is to research alternative property pricing methods with-
out the use of any hedonic property features apart from property size while achieving robust
ex-ante prediction performance. Traditionally used variables describing property condition
and amenities are absent in the proposed approach. The study does not disregard the link
between hedonic motivations of home buyers and property prices. It is observed though that
different price levels may be explained with limited errors using only localization, neighbor-
hood amenities and property size information. To achieve aforementioned research goal, a
pricing model with a spatially autoregressive component has been constructed. With the use
of a housing pricing model and its diagnostics the following hypotheses are evaluated:

1. Pricing houses solely based on their locations and sizes yields accurate results.

2. Inclusion of information about property neighborhood amenities improves pricing mod-
els performance.

(a) Information about quantity of nearby parks improves pricing accuracy.

(b) Information about quantity of nearby restaurants improves pricing accuracy.

(c) Information about quantity of nearby schools improves pricing accuracy.

(d) Information about quantity of nearby bus, tram and subway stops improves pricing
accuracy.

(e) Information about quantity of nearby universities improves pricing accuracy.

Proving hypothesis 1. may provide evidence towards claims that housing markets demon-
strate structural homogeneity in the local spatial groupings. That could mean that local
property groupings are either in relatively similar condition and/or the market does not per-
ceive their condition to be relevant from the pricing perspective. The homogeneity hypothesis
falls out of the scope of this study.

Proving hypothesis 2. may provide useful clues for choices made by AVM/CAMA/other
pricing models developers and researchers in the practical setting.

The pricing model with a spatially autoregressive component used in the study has been
trained on international dataset described in the previous chapter.

The chapter starts with model formulation, training and inference setting. Then model
performance is evaluated in regressor, urban/rural, market segment and feature set break-
downs.
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3.1. Model formulation

3.1.1. Price grid

The spatial autoregressive pricing model (SAR) is a popular modeling choice used to
incorporate spatial relationships into analytics process. The proposed modeling approach
shares a spatial component with SAR models.

Traditionally SAR models are formulated as (d’Amato, 2017a):

Y = Xβ + ρWyY + ϵ [3.1]

where Y is a vector of housing prices, X is a matrix of hedonic variables, β is a vector of
coefficients, ρ is a spatial autoregressive coefficient, Wy is a spatial weight matrix, and ϵ is
the error term.

Setting spatial matrix weights can be performed in a way that for each property only
neighboring properties are contributing to the pricing prediction. Specifically, they can be set
to include only observations from within the same cell from a rectangular spatial grid.

In this study all properties were projected to a rectangular geocoordinate grid. In each
grid cell an average house price per square meter has been calculated. All properties in the
dataset have been assigned a new variable local market housing price per square meter denoted
as plocal_market. Vector of local market prices is an equivalent of the spatial autoregressive
term.

plocal_market = ρWyY [3.2]

Figure 3.1: National price grids

Grid cell sizes have been set individually for each country in a way that divides large
cities (1M+ inhabitants) to at least tens of cells to ensure difference between city districts
are properly captured. Due to sparse nature of rural markets, placing dataset on a regular
grid leaves a large number of cells without any price level information. Leaving empty grid
cells without any price level approximation would greatly constrain model applicability to
property pricing at the national level. The approximation for empty cells has been calculated
as an average of linear and nearest neighbor interpolation using Numpy numeric computation
library.
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3.1.2. Formula

The model is defined with a two-stage formula (spatial component, neighborhood compo-
nent). Multi-level models have been applied to separate value influence from earthquake risks
factor in a case of Stambul property market (Dunning et al., 2017).

The model pricing formula is:

Y = spropertypproperty + ϵY [3.3]

where sproperty is house surface in square meters and pproperty is its predicted price per
square meter. ϵY denotes the global error term.

sproperty is an observed variable, it is property price per meter which needs to predicted.
It has been modeled as a sum of local market price per meter and respective deviation from
that price and an error term, denoted as δpproperty and ϵpproperty respectively.

pproperty = plocal_market + δpproperty + ϵpproperty [3.4]

For each property plocal_market can be observed in the national pricing grid. δpproperty
is further modeled with F (X), a function approximated using machine learning regression
methods. In this study F (X) has been trained with ExtraTreesRegressor and RandomFore-
stRegressor models from Python SciKit-Learn machine learning library.

δpproperty = F (X) + ϵδpproperty [3.5]

Local price per square meter does not introduce further variability into error term, there-
fore:

ϵpproperty = ϵδpproperty [3.6]

Consequently, the global error term can be calculated as:

ϵY = spropertyϵδpproperty [3.7]

Unwinding the equation yields the pricing formula:

Y = sproperty(plocal_market + F (X) + ϵδpproperty) [3.8]

Formula yielded from setting F (X) = 0 (using only national price grid) is referred to and
further evaluated as BaselineModel.
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3.1.3. Model training

Pricing model training pipeline requires a series of data transformations before a chosen
regressor can be fit. Starting with raw property prices, the pipeline calculates pproperty, a
property price per square meter. By subtracting p[local_market] a δpproperty is derived and
it becomes an explained variable. Dataset localization features and property size act as
explanatory variables in the regression problem. For each studied country a machine learning
model of choice is trained with the input and output features using 90% randomly chosen
national dataset records.

Figure 3.2: Model training diagram

3.1.4. Inference

Housing pricing prediction requires an inversion of the model training pipeline. localization
features and property size are used to infer house price per square meter deviation from the
local market. After summing it with local market property prices per square mater pproperty
is derived. Multiplying it with property size yields the price prediction.

Figure 3.3: Model inference diagram
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3.1.5. RandomForestRegressor

For the purpose of this study two ensemble machine learning techniques have been selected.
One of them is Random Forrest algorithm, a method aimed at constructing an ensemble of base
regression/classification trees each trained on the training dataset subsample. The randomness
is introduced also at the base learner level - each tree split is performed on a random subset of
dataset features. Reference SciKit-Learn RandomForestRegressor implementation have been
adopted in the study (Breiman, 2001). In the context of the selected features and house prices
regression problem, the Random Forrest algorithm has been selected due to:

• Presence of non-linear features characteristics - localization features in the form
of amenities counts in different distance ranges from the property may be linked to the
property price in multiple, nuanced and non-linear ways. Random Forests and their
base learners enables the pricing formula to account for that.

• Importance of pricing model performance - Random Forests are recognized and
established method used to achieve high ex-post prediction performance in various re-
gression problems, including property appraisal and pricing. The study aims to max-
imize prediction performance achieved without the use of traditional hedonic model
features.

3.1.6. ExtraTreesRegressor

The Extremely Random Trees algorithm, often referred to as Extra Trees, is an advanced
machine learning methodology which stems from the core principles of Random Forests. How-
ever, two key distinguishing factors exist between these methods:

• Firstly, every base learner within the Extra Trees algorithm is trained employing the
entirety of the available training dataset.

• Secondly, the split points for these base learners are chosen at random, selected from
the empirical feature ranges identified within the training dataset.

In this research, the implementation of the ExtraTreesRegressor from the SciKit-Learn
library is leveraged (Geurts et al., 2006). This algorithmic selection was made with the
objective of deeply investigating and assessing the performance capabilities that this method
potentially offers.

3.2. Model diagnostics

The following section will scrutinize the empirical performance results obtained with the
proposed model, utilizing the dataset gathered prior. The analysis commences with a broad
evaluation of the model’s performance in the task of price prediction. This is succeeded by a
presentation of the model’s performance on a country-specific level, coupled with a detailed
analysis of performance of different F (X) functions.

Subsequently, a comprehensive comparison is undertaken, focusing on regional variations
and market segments. To assess the contribution of individual features to the overall perfor-
mance of the model, an explanatory variable removal procedure is undertaken.

The section culminates with an analysis of the residuals’ distribution. This enables a com-
prehension of the model’s strengths and weaknesses, thereby providing insights to potentially
refine the model for future implementations.
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All diagnostics have been conducted with the use of a holdout sample derived for each
country from 10% randomly selected dataset observations. Different models have been com-
pared with use of accuracy metrics (MAPE) as recommended in he CRC Guide to Automated
Valuation Model (AVM) Performance Testing (Consortium, 2003).

3.2.1. Model performance

MAPE and R2 metrics have been selected to evaluate pricing model performance. These
metrics are universally employed in AVM, CAMA and property pricing models evaluation.
National and model-level breakdown is presented below:

Table 3.1: MAPE - breakdown by countries
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Country

Chile 32.69 26.24 27.88
Colombia 39.22 29.58 29.96
Mexico 92.13 67.51 71.06
Netherlands 17.80 17.68 17.53
Poland 30.44 26.10 26.64

Reported accuracy scores are lower than ones achieved by high-performance, commercial
AVMs in the United States, but they are in line with international levels of models accuracy
(Matysiak, 2017). BaselineModel metrics provide insights into performance of a pricing model
solely based on prices of properties in the vicinity of the priced house. The MAPE difference
between BaselineModel and ExtraTreesRegressor/RandomForestRegressor (ET/RF) allows
for an insightful peak into level of additional localization features overall performance con-
tributions. The decrease is largest when BaselineModel MAPE is largest. The performance
contribution is visible consistently across all countries under study evaluation:

• Colombia: -9.64 ET MAPE / -9.26 RF MAPE

• Chile: -6.45 ET MAPE / -4.81 RF MAPE

• Mexico: -24.62 ET MAPE / -21.07 RF MAPE

• Netherlands: -0.12 ET MAPE / -0.27 RF MAPE

• Poland: -4.34 ET MAPE / -3.8 RF MAPE

Table 3.2: R2 - breakdown by countries
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Country

Chile 0.165040 0.535352 0.522542
Colombia 0.139418 0.371194 0.414225
Mexico 0.013072 0.157298 0.171261
Netherlands 0.284025 0.307087 0.322227
Poland 0.175984 0.284821 0.306110
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Observed R2 metrics for models are consistently larger than BaselineModel R2 metrics in
all countries:

• Colombia: +0.23 ET R2 / +0.27 RF R2

• Chile: +0.37 ET R2 / +0.36 RF R2

• Mexico: +0.14 ET R2 / +0.16 RF R2

• Netherlands: +0.02 ET R2 / +0.04 RF R2

• Poland: +0.11 ET R2 / +0.13 RF R2

3.2.2. Performance in major metropolitan areas

An evaluation has been conducted to investigate model performance in the proximity of
major metropolitan areas and the remaining parts of countries included in the study. The
metropolitan areas division approach has been originally employed in the hotels valuation
study (O’Neill, 2004). Areas in the vicinity1 of the city centers has been included in the
cities_test sample. Observations not included in the cities_test form non_cities_test sample.

MAPE metrics observed are smaller in the cities_test than in non_cities_test in 4/5
countries except for Mexico.

Table 3.3: Model performance in Colombia major metropolitan areas [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

cities_test 37.84 27.91 28.27
non_cities_test 40.79 31.47 31.88

• Colombia: -3.56 ET MAPE in cities_test2

• Colombia: -3.61 RF MAPE in cities_test

1Vicinity is defined as a longitudinal and latitudinal decimal degree distance smaller than 0.135 which
corresponds to the rectangle area with sides of size 26-30 km centered at city center coordinates. The exact
size depends on the city position on the globe.

2Bogotá, Medellín, Cali, Barranquilla, Cartagena, Cúcuta, Bucaramanga
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Table 3.4: Model performance in Chile major metropolitan areas [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

cities_test 30.26 21.56 22.80
non_cities_test 35.14 30.93 32.99

• Chile: -9.37 ET MAPE in cities_test3

• Chile: -10.19 RF MAPE in cities_test

Table 3.5: Model performance in Mexico major metropolitan areas [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

cities_test 130.21 89.58 94.22
non_cities_test 77.84 59.23 62.37

• Mexico: +30.35 ET MAPE in cities_test4

• Mexico: +31.85 RF MAPE in cities_test

Table 3.6: Model performance in Netherlands major metropolitan areas [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

cities_test 16.92 15.95 16.44
non_cities_test 18.04 18.15 17.82

• Netherlands: -2.2 ET MAPE in cities_test5

• Netherlands: -1.38 RF MAPE in cities_test

3Santiago, Antofagasta, Temuco, Iquique, Concepción
4Mexico City, Guadalajara, Ciudad Juárez, Tijuana, Gustavo A. Madero
5Amsterdam, Rotterdam, Utrecht, Eindhoven, Groningen, Breda, Nijmegen, Enschede
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Table 3.7: Model performance in Poland major metropolitan areas [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

cities_test 27.15 19.22 20.13
non_cities_test 31.83 29.00 29.38

• Poland: -3.56 ET MAPE in cities_test6

• Poland: -3.61 RF MAPE in cities_test

3.2.3. Performance in market segments

Model diagnostics has been expanded to cover market segments partitioned by house sizes.
The following segments have been selected:

• 0m2 − 100m2

• 100m2 − 200m2

• 200m2 − 300m2

• 300m2 − 500m2

The metrics evaluation did not reveal any pattern in model performance evolution along
with property size increases/decreases across countries. Difference between biggest and small-
est MAPE across sectors can act as a consistency measure for model performance in different
prediction settings.

Table 3.8: Model performance across Colombian housing market segments [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

market_segment_0_100 29.90 25.41 25.84
market_segment_100_200 40.88 28.84 29.50
market_segment_200_300 40.25 29.09 29.57
market_segment_300_500 43.01 35.35 35.04

• Colombia: +9.94 ET MAPE min-max range

• Colombia: +9.2 RF MAPE min-max range

6Poznań, Zielona Góra, Szczecin, Rzeszów, Cracow, Olsztyn, Bydgoszcz, Poznań, Wrocław, Opole, Łódź,
Lublin, Warsaw, Katowice, Gdańsk

53



Table 3.9: Model performance across Chilean housing market segments [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

market_segment_0_100 32.29 26.43 27.92
market_segment_100_200 36.15 27.31 29.28
market_segment_200_300 32.50 23.53 26.37
market_segment_300_500 25.50 26.46 26.29

• Chile: +3.78 ET MAPE min-max range

• Chile: +2.99 RF MAPE min-max range

Table 3.10: Model performance across Mexican housing market segments [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

market_segment_0_100 65.43 50.07 52.30
market_segment_100_200 83.43 55.92 60.34
market_segment_200_300 125.71 92.50 96.53
market_segment_300_500 108.92 90.46 92.91

• Mexico: +42.43 ET MAPE min-max range

• Mexico: +44.23 RF MAPE min-max range

Table 3.11: Model performance across Netherlands housing market segments [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

market_segment_0_100 17.04 15.43 15.23
market_segment_100_200 17.87 18.14 17.98
market_segment_200_300 18.12 21.20 20.38
market_segment_300_500 28.97 11.27 18.42

• Netherlands: +9.93 ET MAPE min-max range

• Netherlands: +5.15 RF MAPE min-max range
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Table 3.12: Model performance across Polish housing market segments [MAPE]
Model BaselineModel ExtraTreesRegressor RandomForestRegressor
Test scheme

market_segment_0_100 22.73 21.36 21.64
market_segment_100_200 29.13 25.50 25.97
market_segment_200_300 41.00 31.94 33.06
market_segment_300_500 51.46 38.59 39.50

• Poland: +17.23 ET MAPE min-max range

• Poland: +17.86 RF MAPE min-max range

In all housing markets under examination except for Chile the performance consistency
measure is large relative to the overall MAPE metrics. This evidence indicates that for a
practical application, e.g. mass property appraisal, more specialized models would be required.
The findings are consistent with recommendations presented in the IAAO Standard on Mass
Appraisal of Real Property which signifies the importance of homogeneity of the appraised
market segments.

3.2.4. Features performance contribution

Individual localization features used in the model as explanatory variables may contribute
to the model performance in the varying degree. This contribution has been examined in a
series of feature teardown tests. The procedure compares results achieved with model with
all variables to a model with individual feature removed. The procedure is repeated for each
localization variable. In each procedure run only single variable is removed from the original
model. Performance decrease after variable removal indicates that a features is contributing
positively to the model performance. Near-zero changes or performance increases indicate
that variable inclusion in the model does not contribute positively to the model performance
and robustness.
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Table 3.13: Model feature exclusion performance teardown - Colombia [MAPE]
Model ExtraTreesRegressor RandomForestRegressor
Ablation scheme

all_columns 29.58 29.96
parks 31.34 31.24
restaurants 31.40 31.68
schools 31.56 31.35
transport 30.20 30.39
universities 30.12 30.61

• Colombia: +1.76 ET MAPE change without parks variable

• Colombia: +1.28 RF MAPE change without parks variable

• Colombia: +1.82 ET MAPE change without restaurants variable

• Colombia: +1.72 RF MAPE change without restaurants variable

• Colombia: +1.98 ET MAPE change without schools variable

• Colombia: +1.39 RF MAPE change without schools variable

• Colombia: +0.62 ET MAPE change without transport variable

• Colombia: +0.43 RF MAPE change without transport variable

• Colombia: +0.54 ET MAPE change without universities variable

• Colombia: +0.65 RF MAPE change without universities variable

In the Colombian housing market case all explanatory variables are contributing positively to
the overall model performance.
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Table 3.14: Model feature exclusion performance teardown - Chile [MAPE]
Model ExtraTreesRegressor RandomForestRegressor
Ablation scheme

all_columns 26.24 27.88
parks 28.23 29.69
restaurants 27.41 28.34
schools 28.14 29.08
transport 27.36 28.99
universities 26.40 28.01

• Chile: +1.99 ET MAPE change without parks variable

• Chile: +1.81 RF MAPE change without parks variable

• Chile: +1.17 ET MAPE change without restaurants variable

• Chile: +0.46 RF MAPE change without restaurants variable

• Chile: +1.9 ET MAPE change without schools variable

• Chile: +1.2 RF MAPE change without schools variable

• Chile: +1.12 ET MAPE change without transport variable

• Chile: +1.11 RF MAPE change without transport variable

• Chile: +0.16 ET MAPE change without universities variable

• Chile: +0.13 RF MAPE change without universities variable

In the Chilean housing market case all explanatory variables are contributing positively to
the overall model performance.
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Table 3.15: Model feature exclusion performance teardown - Mexico [MAPE]
Model ExtraTreesRegressor RandomForestRegressor
Ablation scheme

all_columns 67.51 71.06
parks 73.75 75.75
restaurants 69.16 73.99
schools 72.52 76.11
transport 70.90 73.10
universities 67.71 71.84

• Mexico: +6.24 ET MAPE change without parks variable

• Mexico: +4.69 RF MAPE change without parks variable

• Mexico: +1.65 ET MAPE change without restaurants variable

• Mexico: +2.93 RF MAPE change without restaurants variable

• Mexico: +5.01 ET MAPE change without schools variable

• Mexico: +5.05 RF MAPE change without schools variable

• Mexico: +3.39 ET MAPE change without transport variable

• Mexico: +2.04 RF MAPE change without transport variable

• Mexico: +0.2 ET MAPE change without universities variable

• Mexico: +0.78 RF MAPE change without universities variable

In the Mexican housing market case all explanatory variables are contributing positively
to the overall model performance.
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Table 3.16: Model feature exclusion performance teardown - Netherlands [MAPE]
Model ExtraTreesRegressor RandomForestRegressor
Ablation scheme

all_columns 17.68 17.53
parks 17.59 17.32
restaurants 17.77 17.65
schools 18.85 17.95
transport 18.08 17.95
universities 17.68 17.70

• Netherlands: -0.09 ET MAPE change without parks variable

• Netherlands: -0.21 RF MAPE change without parks variable

• Netherlands: +0.09 ET MAPE change without restaurants variable

• Netherlands: +0.12 RF MAPE change without restaurants variable

• Netherlands: +1.17 ET MAPE change without schools variable

• Netherlands: +0.42 RF MAPE change without schools variable

• Netherlands: +0.4 ET MAPE change without transport variable

• Netherlands: +0.42 RF MAPE change without transport variable

• Netherlands: -0.0 ET MAPE change without universities variable

• Netherlands: +0.17 RF MAPE change without universities variable

Features performance contribution is smaller in Netherlands compared to other countries
included in the study. Inclusion of parks and universities variables yields performance de-
creases or only a minor increase.
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Table 3.17: Model feature exclusion performance teardown - Poland [MAPE]
Model ExtraTreesRegressor RandomForestRegressor
Ablation scheme

all_columns 26.10 26.64
parks 26.67 27.17
restaurants 26.69 27.02
schools 26.48 26.80
transport 27.66 27.83
universities 26.33 26.68

• Poland: +0.57 ET MAPE change without parks variable

• Poland: +0.53 RF MAPE change without parks variable

• Poland: +0.59 ET MAPE change without restaurants variable

• Poland: +0.38 RF MAPE change without restaurants variable

• Poland: +0.38 ET MAPE change without schools variable

• Poland: +0.16 RF MAPE change without schools variable

• Poland: +1.56 ET MAPE change without transport variable

• Poland: +1.19 RF MAPE change without transport variable

• Poland: +0.23 ET MAPE change without universities variable

• Poland: +0.04 RF MAPE change without universities variable

In the Polish housing market case all explanatory variables are contributing positively to the
overall model performance.
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3.2.5. Detailed performance

Detailed performance evaluation reveals further insights into overall model performance in
the out-of-sample predictive tasks. By examining distribution of APE scores and prediction
residuals a more complete view on the model performance can be formed.

Table 3.18: ExtraTreesRegressor detailed performance metrics
Mean residual 1Q residuals 3Q residuals 1Q APE 2Q APE 3Q APE

Country

Colombia 22114.27 -548625.58 755770.20 8.45 20.80 39.63
Mexico -149.88 -2919.01 3448.23 8.25 30.72 66.14
Chile 24542.68 -231733.98 306474.61 3.97 12.31 31.56
Netherlands 37.49 -455.91 548.69 7.02 15.09 23.95
Poland 18.29 -755.56 940.81 2.94 14.92 36.27

Table 3.19: RandomForestRegressor detailed performance metrics
Mean residual 1Q residuals 3Q residuals 1Q APE 2Q APE 3Q APE

Country

Colombia 19541.68 -576428.09 744842.77 10.15 21.17 38.59
Mexico 3.22 -3187.19 4006.18 11.56 32.54 71.27
Chile 35556.41 -242062.18 358573.02 5.39 14.35 32.53
Netherlands 36.98 -470.92 558.88 8.42 13.51 23.73
Poland 37.83 -815.00 1020.17 4.75 16.07 35.60

Close examination of the above tables reveals that:

• Median APE is smaller than 25 in 4/5 countries: It means that 50% of houses were
priced with lower or equal prediction error in 4/5 countries. Such results can be viewed
as a high model performance.

• MAPE > Median APE: In all countries long tail of larger prediction errors contribute
to the inequality. In a general case of an average property performance is higher than
MAPE indicate.

• Mean residuals are relatively close to zero: examined models don not present tendencies
to undervalue or overvalue houses.
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3.2.6. Residuals distribution - Chile

Presented and discussed below are histograms and scatterplots for residuals of Chilean
house pricing models. Results for other countries are in line with Chilean results. They are
reported in the Appendix A.

Figure 3.4: Chile - BaselineModel residuals distribution

Figure 3.5: Chile - BaselineModel residuals scatterplot

Application of price grid based model yields near-zero-centered distribution without very
long tails.
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Figure 3.6: Chile - ExtraTreesRegressor residuals distribution

Figure 3.7: Chile - ExtraTreesRegressor residuals scatterplot

Application of the ExtraTreesRegressor based model yields distribution which is more
symmetrical and which clearly manifests higher model performance compared to the Base-
lineModel.
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Figure 3.8: Chile - RandomForestRegressor residuals distribution

Figure 3.9: Chile - RandomForestRegressor residuals scatterplot

Application of the RandomForestRegressor based model yields distribution which is more
symmetrical and which clearly manifests higher model performance compared to the Base-
lineModel. The results are consistent with ExtraTreesRegressor results.

3.3. Conclusions

Proposed pricing model has been successfully applied to analysis in multiple countries and
achieved high prediction performance in all markets except for Mexican housing market. As
evidenced by model diagnostics to improve model performance in Mexican market a greater
degree of segmentation would be required.

High prediction accuracy contributes valuable evidence supporting hypothesis 1. Absence
of all hedonic features but property size did not impede the attempt to develop robust and
accurate property pricing model.

The study contributes significant evidence supporting hypotheses 2. (a-d). In almost all
countries and for all examined variables results conclusively support the claim that inclusion of
information about nearby amenities improves predictive performance of pricing models. The
only exceptions are parks and universities variables in Dutch housing market where achieved
performance is very high. In that case variables inclusion decreased performance only slightly
or had no effect.
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The dataset and pricing model can be expanded towards inclusion of hedonic features.
These might contribute further towards dataset usefulness and model performance.
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Chapter 4

Summary

4.1. Dataset

The dataset of real estate listings from 5 OECD countries, compiled in the study, has
proven to be an instrumental resource, offering a wealth of information on the dynamics of
housing markets. This expansive data source has not only helped analyze broad trends but
has also delved into finer details, providing a holistic view of the real estate scenario in these
countries.

The analysis of the dataset has provided critical insights into the spatial distribution of
housing markets, highlighting both regional and local differences in terms of market activity
and price levels. This has shed light on the patterns of distribution and varying scales of
market activity, helping to understand the disparity in real estate prices across different
locations.

Additionally, the study also provides a deep dive into the distributions of house prices and
sizes, giving a clear perspective on housing affordability and spatial constraints. It aids in
drawing comparisons between various house sizes and their corresponding prices, painting a
comprehensive picture of the housing landscape across the countries.

This dataset could serve as a valuable resource for researchers from a broad array of
fields including economics, geography, urban planning, and data science. It could provide
them with the necessary tools to derive valuable insights, allowing them to conduct detailed
studies, extrapolate trends, and make meaningful contributions to their respective fields.

Efforts by the author are in progress to further enhance the dataset by incorporating hedo-
nic features of properties. This will involve looking at factors beyond size and location, such
as the physical condition of the property, the presence of amenities, and unique characteristics
that might contribute to its value.

The geographical coverage of the dataset is also set to expand, broadening the scope and
applicability of the research. This would increase the depth and breadth of the dataset, making
it more versatile and comprehensive, thereby strengthening its relevance and applicability.

Furthermore, the author plans to share this dataset for scientific purposes with researchers
from all aforementioned domains. This decision reflects a commitment to promoting open
access to data, fostering collaborative research, and supporting the advancement of knowledge
in these critical fields.
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4.2. Model

The study’s modeling results provide substantial evidence about the critical role of spatial
information in real estate asset valuation. It emphasizes that the geographical context of
properties, including their location and surrounding infrastructure, significantly influences
their value.

The findings of this analysis align seamlessly with other reported research conducted in
the field of real estate. This consistency with existing literature further bolsters the credibility
of the study and the validity of its conclusions.

Interestingly, the model has demonstrated high performance even in the absence of tradi-
tionally included hedonic features. This shows the robustness of the model, and suggests that
it is capable of accurately assessing property value even without these typically considered
characteristics.

The study has confirmed that certain features that play a pivotal role in improving the
accuracy of real estate pricing models. These include factors that contribute to the quality of
life and accessibility in a given area:

• number of restaurants in the neighborhood

• number of schools in the neighborhood

• number of parks in the neighborhood

• number of tram, bus and subway stops in the neighborhood

• number of universities in the neighborhood
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Appendix A

Residuals distribution - all countries

A.1. Chile

A.1.1. BaselineModel

Figure A.1: Chile - BaselineModel residuals distribution

Figure A.2: Chile - BaselineModel residuals scatterplot
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A.1.2. ExtraTreesRegressor

Figure A.3: Chile - ExtraTreesRegressor residuals distribution

Figure A.4: Chile - ExtraTreesRegressor residuals scatterplot
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A.1.3. RandomForestRegressor

Figure A.5: Chile - RandomForestRegressor residuals distribution

Figure A.6: Chile - RandomForestRegressor residuals scatterplot
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A.2. Colombia

A.2.1. BaselineModel

Figure A.7: Colombia - BaselineModel residuals distribution

Figure A.8: Colombia - BaselineModel residuals scatterplot
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A.2.2. ExtraTreesRegressor

Figure A.9: Colombia - ExtraTreesRegressor residuals distribution

Figure A.10: Colombia - ExtraTreesRegressor residuals scatterplot
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A.2.3. RandomForestRegressor

Figure A.11: Colombia - RandomForestRegressor residuals distribution

Figure A.12: Colombia - RandomForestRegressor residuals scatterplot
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A.3. Mexico

A.3.1. BaselineModel

Figure A.13: Mexico - BaselineModel residuals distribution

Figure A.14: Mexico - BaselineModel residuals scatterplot
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A.3.2. ExtraTreesRegressor

Figure A.15: Mexico - ExtraTreesRegressor residuals distribution

Figure A.16: Mexico - ExtraTreesRegressor residuals scatterplot
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A.3.3. RandomForestRegressor

Figure A.17: Mexico - RandomForestRegressor residuals distribution

Figure A.18: Mexico - RandomForestRegressor residuals scatterplot
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A.4. Netherlands

A.4.1. BaselineModel

Figure A.19: Netherlands - BaselineModel residuals distribution

Figure A.20: Netherlands - BaselineModel residuals scatterplot
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A.4.2. ExtraTreesRegressor

Figure A.21: Netherlands - ExtraTreesRegressor residuals distribution

Figure A.22: Netherlands - ExtraTreesRegressor residuals scatterplot
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A.4.3. RandomForestRegressor

Figure A.23: Netherlands - RandomForestRegressor residuals distribution

Figure A.24: Netherlands - RandomForestRegressor residuals scatterplot
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A.5. Poland

A.5.1. BaselineModel

Figure A.25: Poland - BaselineModel residuals distribution

Figure A.26: Poland - BaselineModel residuals scatterplot
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A.5.2. ExtraTreesRegressor

Figure A.27: Poland - ExtraTreesRegressor residuals distribution

Figure A.28: Poland - ExtraTreesRegressor residuals scatterplot
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A.5.3. RandomForestRegressor

Figure A.29: Poland - RandomForestRegressor residuals distribution

Figure A.30: Poland - RandomForestRegressor residuals scatterplot
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